Lecture 27

We are going to start with the conjugacy classes in S_{n}.

Recall that conjugacy classes are just orbits for the conjugate action of a group onto itself. In a previous lecture we saw the conjugates and conjug--any classes in S_{3}. Here, we want to see conju--gates and conjugacy classes in S_{n}. So let's start with some examples and try to analyze the situation there.

Recall that any $\sigma \in S_{n}$ can be written as a product of disjoint cycles. So weill only work w/ disjoint cycles.

Examples:-

Consider S_{7} and let $\tau=(125)(43)$.
Let's find what the conjugate action of τ on some $\sigma \in S_{7}$ is.

Note that $\tau^{-1}=((125)(43))^{-1}=(43)^{-1}(125)^{-1}$

$$
=(43)(152)
$$

i) Let $\sigma=(375)$. Then $\tau \cdot \sigma=\tau \sigma \tau^{-1}$

$$
\begin{aligned}
\tau \sigma \tau^{-1} & =(125)(43)(375)(43)(152) \\
& =(147)=(471)
\end{aligned}
$$

Note that $\tau \sigma \tau^{-1}$ is again a 3-cycle. Moreover, the entries of $\tau \rho \tau^{-1}$ are just the images of the entries of σ under τ as $\tau(3)=4$

$$
\begin{aligned}
& \tau(7)=7 \\
& \tau(5)=1
\end{aligned}
$$

(ii) $\sigma=(1754)(23)$

Then $\tau \sigma \tau^{-1}=(125)(43)(1754)(23)(43)(125)$

$$
=(2713)(5.4)
$$

Again, $\tau \sigma \tau^{\prime 1}$ has the same cycle type decomp--osition as ρ and the entries ie $\tau \sigma \tau^{-1}$ are jot the images of the entries in σ under τ.

Let's change τ and see if the some thing happens or not. Suppose $\tau=(1543)$
$\left.i^{\prime}\right) \sigma=(375)$. Note that $\tau^{-1}=(1345)$ Then $\tau \sigma \tau^{-1}=(1543)(375)(1345)$

$$
=(741)=(174)
$$

Again $\tau \sigma \tau^{-1}$ has the same cycle type as σ and the entries ie $\tau \sigma \tau^{-1}$ are just the images of entries in σ under τ.
ii') $\sigma=(1754)(23)$

$$
\begin{aligned}
\tau_{\sigma} \tau^{-1} & =(1543)(1754)(23)(1345) \\
& =(5743)(21)
\end{aligned}
$$

Again $\tau \sigma \tau^{-1}$ has the same cycle type as σ and the entries iv e $\tau \sigma \tau^{-1}$ are just the images of entries in σ under τ.

All this examples basically tell is that given $\sigma \in S_{n}$, any conjugate to σ has the same cycle decomposition type as 8 and we com explicitly find the entries too. More precisely,

Theorem 1 Let $\sigma \in S_{n}$. Then $\forall \tau \in S_{n}, \tau \sigma \tau^{-1}$ has the same cycle decomposition type as σ. More--over the entries of $\tau \sigma \tau^{-1}$ are obtained by s just writing the images of corresponding entries
of σ under τ.
Proof:- Suppose

$$
\sigma=\left(a_{1} a_{2} \ldots a_{n}\right)\left(b_{1} b_{2} \cdots b_{m}\right) \cdots
$$

In order to prove the theorem, we just need to show that if for $i, j \in\{1,2, \ldots, n\}$
$\sigma(i)=j$ then
$\tau \sigma \tau^{-1}$ sends $\tau(i)$ to $\tau(j)$, as then we just replace the entries in \mathcal{S} by theisimages under τ which will also keep the some cycle clecomposition type.

Now s $\quad \tau \sigma \tau^{-1}(\tau(i))=\tau \sigma(i)=\tau(j)$
$=0 \quad \tau \sigma \tau^{-1}$ sends $\tau(i)$ to $\tau(j)$ and hence the theorem is proved.

So now we know that any conjugate of σ
has the some cycle decomposition type as σ. Is the converse true?, i.e., any $\alpha \in S_{n}$ which has the same cycle decomposition type as σ is conjugate to σ which is to say that must there be a $\tau \in S_{n}$ s.t. $\alpha=\tau \sigma \tau^{-1}$?

It's enough to give an algorithm for finding τ, once we are given α and σ.

Again let $\alpha, \sigma \in S_{7}, \alpha=(1235)$ and $\sigma=(1374)$. We want to find a $\tau \in S_{7}$ sot. $\tau \sigma \tau^{-1}=\alpha$. We follow the following algorithm:-

1) Write both α and σ as a product of disjoint cycles and write the cycles ire increasing order of their lengths. We must inclucle the 1-cycles too.
2) From Theorem 1, we know that if σ and α were conjugates then the entries of α are just the images of the corresponding entries of σ under τ. So, for finding τ we reverse-engineer! i.e., look at the corresponding entries in σ and α and write τ as that permutatioic which will make Theorem 1 work. Let's see an example to understand this fact.

Following D, we write α and σ as follows
σ
$(2)(5)(6)(1374)$
α
$(4)(6)(7)(1235)$
i.e., we write σ and σ in increasing order of the lengths of the cycle, including the trycles. Since there are more than one 1-cycle, it doeon't matter in which order you write them.

Now if $\alpha=\tau_{\gamma} \tau^{-1}$ then from Theorem 1, τ should send $2 \longmapsto 4$

$$
\begin{aligned}
& 5 \longmapsto 6 \\
& 6 \longmapsto 7 \\
& 1 \longmapsto 1 \\
& 3 \longmapsto 2 \\
& 7 \longrightarrow 3 \\
& 4 \longmapsto 5
\end{aligned}
$$

Writing that as cycles $\tau=(245673)$ and one can check that indeed $\tau \sigma \tau^{-1}=\alpha$.

Let's see another example.
Let $\sigma, \alpha \in S_{q} . \sigma=(15)(349)(682)$ and $\alpha=(23)(896)(517)$

We wont to find $\tau \in S_{q}$ s.t. $\tau \sigma \tau^{-1}=\alpha$.
We follow 1) and 2) of the algorithm:-
$(7)(15)(349)(682)$

$$
(4)(23)(896)(517)
$$

Note, again that we have written the 1-cycle too and it doesn't matter in which order you write the two 3 -cycles. They might give different τ 's but all them will satisfy $\tau \sigma \tau^{-1}=\alpha$. So we get that

There can be many τ ir S_{n} sit. $\tau \sigma \tau^{-1}=\alpha$ for a given σ and α is S_{n}.
Now we do 2).
τ must send $7 \rightarrow 4,1 \rightarrow 2,5 \rightarrow 3,3 \longrightarrow 8,4 \rightarrow 9$,

$$
9 \longmapsto 6,6 \longrightarrow 5,8 \longrightarrow 1,2 \mapsto 7 \text {, so }
$$

$\tau=(749653812)$ and one con check that $\tau \sigma \tau^{-1}=\alpha$.

In fact, there is nothing special with these examples and the some procedure will work for
any δ_{n}, giving

Theorem 2 if $\sigma, \alpha \in S_{n}$ have the some cycle decomposition type, then they are conjugate to each other, i.e., $\exists \tau \in S_{n}$ s.t. $\tau \sigma \tau^{-1}=\alpha$. Moreover, τ can be explicitly found by following the proce--clures in the algorithm.

So combining Theorem land 2, we get the following important result:-

Let $\sigma \in S_{n}$. Then $\alpha \in S_{n}$ is conjugate to σ_{1} ie, $\alpha \in O_{\alpha}$ if and only if σ and α have the same cycle decomposition type.

So for example is $G=S_{5}$ and $\sigma=(1234)$
then all other 4-cycles are conjugate to σ and only 4-cycles are conjugate to σ. Thew

$$
\left|O_{\sigma}\right|=\# \text { of } 4 \text {-cycles. }
$$

But the number of 4 cycles are ${ }^{5} C_{4} \times 4!$

$$
\begin{aligned}
&=\frac{5!}{4!} \times 4! \\
& 4=\frac{5!}{4}
\end{aligned}=5 \times 3 \times 2 \times 1
$$

So, $\left|O_{\sigma}\right|=30$. But from the O-S Theorem, $\left|S_{5}\right|=\left|O_{\sigma}\right||\operatorname{Stab}(\sigma)|$ and for the conjug--aton action, $\operatorname{stab}(\sigma)=C(\sigma) \rightarrow$ centralizer of σ, thus we get, $|C(\sigma)|=\frac{\left|S_{5}\right|}{\left|O_{\sigma}\right|}=\frac{5!}{30}$

$$
=\frac{5!}{\frac{5_{0} \times 4!}{4}}
$$

$$
=\frac{5!\times 4}{{ }^{5} C_{4} \times 4!}=4
$$

But in you follow the argument above, then there was nothing special about S_{5} or a 4-cycle.

Let $\sigma \in S_{n}$ be an m-cycle. Then from Theorem 1 and 2, all m-cycles in S_{n} are the only conjugates to σ

$$
\begin{aligned}
& \Rightarrow \quad\left|D_{\sigma}\right|=\frac{{ }^{n} C_{m} \times m!}{m}=\frac{n!}{m!\times(n-m)!} \times m! \\
& m
\end{aligned}
$$

So $\quad\left|O_{\sigma}\right|=\frac{n \cdot(n-1) \cdots(n-m+1)}{m}$
and hence from the O-S Theorem, we get that

$$
\begin{aligned}
|C(\sigma)|=\frac{\left|S_{n}\right|}{\left|O_{\sigma}\right|} & =\frac{n!}{\frac{n \cdot(n-1) \cdots(n-m+1)}{m}} \\
& =m \cdot(n-m)!
\end{aligned}
$$

Thus for any m-cycle σ ie S_{n}

$$
|C(\sigma)|=m \cdot(n-m)!
$$

Finally, we want to prove Cauchy's Theorem for any group, using group action. Earlier, we proved Cauchy's theorem for abelion groups only.

Theorem [Cauchy] Let G be a finite group and let b be a prime sit. $p||G|$. Then G has on element of order p.

Proof: \rightarrow Consider the set X

$$
X=\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in \underbrace{G \times G \times \ldots \times G}_{p \text {-times }} \mid g_{1} g_{2} \ldots g_{p}=e\}
$$

i.e., we are considering those p-tuples in $\frac{G \times G \times \ldots \times G}{p-t a i n e s}$ s.t. their ordered product $=e$.

Note that p is the same prime as lie the hypothesis of the theorem. Also, \because each $g_{i} \in G$ $1 \leq i s p$, we are just multiplying them to ge--there and getting e.

Now $\underbrace{(e, e, \ldots, e)}_{p-t i m e s} \in X=0 \quad X \neq \phi$.
Also, if $\left(g_{1}, \ldots, g_{p}\right) \in X$ then there are $|G|$ choices for $g_{1},|G|$ choices for $g_{2}, \ldots,|G|$ choices for g_{p-1}. However, since $g_{1} g_{2} \ldots g_{p}=e$

$$
\Rightarrow \quad g_{p}=\left(g_{1} g_{2} \ldots, g_{p-1}\right)^{-1} \Rightarrow g_{p} \text { hat }
$$

only one choice, once we have chosen g_{1}, \ldots, g_{p-1}. The, $|x|=|G|^{p-1}$. Since $p||G|=0$

$$
\begin{equation*}
p||x| \tag{1}
\end{equation*}
$$

Consider an action of \mathbb{Z}_{p} on X by

$$
\text { 1. }\left(g_{1}, g_{2}, \ldots, g_{p}\right)=\left(g_{2}, g_{3}, \ldots, g_{p}, g_{1}\right)
$$

i.e., $y \perp$ acts on $\left(g_{1}, g_{2}, \ldots, g_{p}\right)$ then we shift the elements towards the left by I place. Similarly $2 \cdot\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p}\right)=\left(g_{3}, \ldots, g_{p}, g_{1}, g_{2}\right)$ so we shift every element towards left by 2 placer.

Check:- The above is a group action.

By the Orbit-Stabilizer Theorem, if $x \in X$
$\Rightarrow\left|O_{x}\right|\left|\left|\mathbb{Z}_{p}\right|\right.$ as \mathbb{Z}_{p} is acting on X.
$\Rightarrow \quad \forall x \in X, \quad\left|O_{x}\right|=1$ or p.

Also, the orbits partitions $X=0$

$$
\begin{align*}
& \sum_{x \in X}\left|O_{x}\right|=|x| \\
\because & \text { from (1), } p||x|=p| \sum\left|0_{x}\right|
\end{align*}
$$

now since $\left|O_{x}\right|$ can have size either loo p \Rightarrow either all orbits have size p or If atleast one orbit has size $1=0$ there must be at least p orbits $w /$ size l as only them (2) will be satisfied.

Now $w /$ the above action of \mathbb{Z}_{p} on X

$$
\left|O_{(e, e, \ldots, e)}\right|=1
$$

Thus there must be atteast $(p-1)$ elements ie X, not equal to (e, \ldots, e) with their orbit size as 1.

$$
\text { If }\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X w /\left|0_{\left(g_{1}, \ldots, g_{p}\right)}\right|=1
$$

then \quad. $\left(g_{1}, \ldots, g_{p}\right)=\left(g_{1}, \ldots, g_{p}\right)$

$$
\begin{array}{ll}
\Rightarrow & \left(g_{2}, g_{3}, \ldots, g_{p}, g_{1}\right)=\left(g_{1}, \ldots, g_{p}\right) \\
\Rightarrow \quad & g_{2}=g_{1} \\
& g_{3}=g_{2} \\
\vdots \tag{say}\\
& g_{1}=g_{p}
\end{array}
$$

Now $\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X \Rightarrow g_{1} g_{2} \ldots g_{p}=e$

$$
\begin{aligned}
& \Rightarrow \underbrace{g \cdot g \cdots g}_{p-t i m e s}=e \Rightarrow g^{p}=e \\
& \Rightarrow \operatorname{ord}(g) \mid p \Rightarrow \operatorname{ord}(g)=1 \text { or } \operatorname{ord}(g)=p \\
& \text { If } \operatorname{ord}(g)=1 \Rightarrow g=e \Rightarrow\left(g, \cdots, g_{p}\right)=(e, \ldots, e)
\end{aligned}
$$ which is not possible.

Thus $\operatorname{ord}(g)=p$ and hence G has an element of order p.

